Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Swiss Med Wkly ; 151: w20475, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-2249422

ABSTRACT

BACKGROUND: SARS-CoV-2/COVID-19, which emerged in China in late 2019, rapidly spread across the world with several million victims in 213 countries. Switzerland was severely hit by the virus, with 43,000 confirmed cases as of 1 September 2020. AIM: In cooperation with the Federal Office of Public Health, we set up a surveillance database in February 2020 to monitor hospitalised patients with COVID-19, in addition to their mandatory reporting system. METHODS: Patients hospitalised for more than 24 hours with a positive polymerase chain-reaction test, from 20 Swiss hospitals, are included. Data were collected in a customised case report form based on World Health Organisation recommendations and adapted to local needs. Nosocomial infections were defined as infections for which the onset of symptoms was more than 5 days after the patient’s admission date. RESULTS: As of 1 September 2020, 3645 patients were included. Most patients were male (2168, 59.5%), and aged between 50 and 89 years (2778, 76.2%), with a median age of 68 (interquartile range 54–79). Community infections dominated with 3249 (89.0%) reports. Comorbidities were frequently reported, with hypertension (1481, 61.7%), cardiovascular diseases (948, 39.5%) and diabetes (660, 27.5%) being the most frequent in adults; respiratory diseases and asthma (4, 21.1%), haematological and oncological diseases (3, 15.8%) were the most frequent in children. Complications occurred in 2679 (73.4%) episodes, mostly respiratory diseases (2470, 93.2% in adults; 16, 55.2% in children), and renal (681, 25.7%) and cardiac (631, 23.8%) complications for adults. The second and third most frequent complications in children affected the digestive system and the liver (7, 24.1%). A targeted treatment was given in 1299 (35.6%) episodes, mostly with hydroxychloroquine (989, 76.1%). Intensive care units stays were reported in 578 (15.8%) episodes. A total of 527 (14.5%) deaths were registered, all among adults. CONCLUSION: The surveillance system has been successfully initiated and provides a robust set of data for Switzerland by including about 80% (compared with official statistics) of SARS-CoV-2/COVID-19 hospitalised patients, with similar age and comorbidity distributions. It adds detailed information on the epidemiology, risk factors and clinical course of these cases and, therefore, is a valuable addition to the existing mandatory reporting.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Population Surveillance , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , Child , Child, Preschool , Comorbidity , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Switzerland/epidemiology , Young Adult
2.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613508

ABSTRACT

BackgroundSince the onset of the COVID-19 pandemic, the disease has frequently been compared with seasonal influenza, but this comparison is based on little empirical data.AimThis study compares in-hospital outcomes for patients with community-acquired COVID-19 and patients with community-acquired influenza in Switzerland.MethodsThis retrospective multi-centre cohort study includes patients > 18 years admitted for COVID-19 or influenza A/B infection determined by RT-PCR. Primary and secondary outcomes were in-hospital mortality and intensive care unit (ICU) admission for patients with COVID-19 or influenza. We used Cox regression (cause-specific and Fine-Gray subdistribution hazard models) to account for time-dependency and competing events with inverse probability weighting to adjust for confounders.ResultsIn 2020, 2,843 patients with COVID-19 from 14 centres were included. Between 2018 and 2020, 1,381 patients with influenza from seven centres were included; 1,722 (61%) of the patients with COVID-19 and 666 (48%) of the patients with influenza were male (p < 0.001). The patients with COVID-19 were younger (median 67 years; interquartile range (IQR): 54-78) than the patients with influenza (median 74 years; IQR: 61-84) (p < 0.001). A larger percentage of patients with COVID-19 (12.8%) than patients with influenza (4.4%) died in hospital (p < 0.001). The final adjusted subdistribution hazard ratio for mortality was 3.01 (95% CI: 2.22-4.09; p < 0.001) for COVID-19 compared with influenza and 2.44 (95% CI: 2.00-3.00, p < 0.001) for ICU admission.ConclusionCommunity-acquired COVID-19 was associated with worse outcomes compared with community-acquired influenza, as the hazards of ICU admission and in-hospital death were about two-fold to three-fold higher.


Subject(s)
COVID-19 , Influenza, Human , Cohort Studies , Hospital Mortality , Hospitalization , Hospitals , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Intensive Care Units , Male , Pandemics , Retrospective Studies , SARS-CoV-2 , Switzerland/epidemiology
3.
Allergy ; 77(7): 2090-2103, 2022 07.
Article in English | MEDLINE | ID: covidwho-1605386

ABSTRACT

BACKGROUND: Serological tests are a powerful tool in the monitoring of infectious diseases and the detection of host immunity. However, manufacturers often provide diagnostic accuracy data generated through biased studies, and the performance in clinical practice is essentially unclear. OBJECTIVES: We aimed to determine the diagnostic accuracy of various serological testing strategies for (a) identification of patients with previous coronavirus disease-2019 (COVID-19) and (b) prediction of neutralizing antibodies against SARS-CoV-2 in real-life clinical settings. METHODS: We prospectively included 2573 consecutive health-care workers and 1085 inpatients with suspected or possible previous COVID-19 at a Swiss University Hospital. Various serological immunoassays based on different analytical techniques (enzyme-linked immunosorbent assays, ELISA; chemiluminescence immunoassay, CLIA; electrochemiluminescence immunoassay, ECLIA; and lateral flow immunoassay, LFI), epitopes of SARS-CoV-2 (nucleocapsid, N; receptor-binding domain, RBD; extended RBD, RBD+; S1 or S2 domain of the spike [S] protein, S1/S2), and antibody subtypes (IgG, pan-Ig) were conducted. A positive real-time PCR test from a nasopharyngeal swab was defined as previous COVID-19. Neutralization assays with live SARS-CoV-2 were performed in a subgroup of patients to assess neutralization activity (n = 201). RESULTS: The sensitivity to detect patients with previous COVID-19 was ≥85% in anti-N ECLIA (86.8%) and anti-S1 ELISA (86.2%). Sensitivity was 84.7% in anti-S1/S2 CLIA, 84.0% in anti-RBD+LFI, 81.0% in anti-N CLIA, 79.2% in anti-RBD ELISA, and 65.6% in anti-N ELISA. The specificity was 98.4% in anti-N ECLIA, 98.3% in anti-N CLIA, 98.2% in anti-S1 ELISA, 97.7% in anti-N ELISA, 97.6% in anti-S1/S2 CLIA, 97.2% in anti-RBD ELISA, and 96.1% in anti-RBD+LFI. The sensitivity to detect neutralizing antibodies was ≥85% in anti-S1 ELISA (92.7%), anti-N ECLIA (91.7%), anti-S1/S2 CLIA (90.3%), anti-RBD+LFI (87.9%), and anti-RBD ELISA (85.8%). Sensitivity was 84.1% in anti-N CLIA and 66.2% in anti-N ELISA. The specificity was ≥97% in anti-N CLIA (100%), anti-S1/S2 CLIA (97.7%), and anti-RBD+LFI (97.9%). Specificity was 95.9% in anti-RBD ELISA, 93.0% in anti-N ECLIA, 92% in anti-S1 ELISA, and 65.3% in anti-N ELISA. Diagnostic accuracy measures were consistent among subgroups. CONCLUSIONS: The diagnostic accuracy of serological tests for SARS-CoV-2 antibodies varied remarkably in clinical practice, and the sensitivity to identify patients with previous COVID-19 deviated substantially from the manufacturer's specifications. The data presented here should be considered when using such tests to estimate the infection burden within a specific population and determine the likelihood of protection against re-infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Sensitivity and Specificity
4.
Crit Care ; 25(1): 403, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528689

ABSTRACT

BACKGROUND: Evidence about the impact of the pandemic of COVID-19 on the incidence rates of blood cultures contaminations and bloodstream infections in intensive care units (ICUs) remains scant. The objective of this study was to investigate the nationwide epidemiology of positive blood cultures drawn in ICUs during the first two pandemic waves of COVID-19 in Switzerland. METHODS: We analyzed data on positive blood cultures among ICU patients, prospectively collected through a nationwide surveillance system (ANRESIS), from March 30, 2020, to May 31, 2021, a 14-month timeframe that included a first wave of COVID-19, which affected the French and Italian-speaking regions, an interim period (summer 2020) and a second wave that affected the entire country. We used the number of ICU patient-days provided by the Swiss Federal Office of Public Health as denominator to calculate incidence rates of blood culture contaminations and bloodstream infections (ICU-BSI). Incidence rate ratios comparing the interim period with the second wave were determined by segmented Poisson regression models. RESULTS: A total of 1099 blood culture contaminations and 1616 ICU-BSIs were identified in 52 ICUs during the study. Overall, more episodes of blood culture contaminations and ICU-BSI were observed during the pandemic waves, compared to the interim period. The proportions of blood culture contaminations and ICU-BSI were positively associated with the ICU occupancy rate, which was higher during the COVID-19 waves. During the more representative second wave (versus interim period), we observed an increased incidence of blood culture contaminations (IRR 1.57, 95% CI 1.16-2.12) and ICU-BSI (IRR 1.20, 95% CI 1.03-1.39). CONCLUSIONS: An increase in blood culture contaminations and ICU-BSIs was observed during the second COVID-19 pandemic wave, especially in months when the ICU burden of COVID-19 patients was high.


Subject(s)
Blood Culture , COVID-19/epidemiology , Equipment Contamination/statistics & numerical data , Intensive Care Units/statistics & numerical data , Pandemics , Population Surveillance , Sepsis/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Switzerland/epidemiology
5.
Front Immunol ; 12: 666163, 2021.
Article in English | MEDLINE | ID: covidwho-1273338

ABSTRACT

The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.


Subject(s)
COVID-19/immunology , Influenza, Human/immunology , Humans , SARS-CoV-2/immunology , Transcriptome
6.
Allergy ; 76(3): 853-865, 2021 03.
Article in English | MEDLINE | ID: covidwho-804258

ABSTRACT

BACKGROUND: Serological immunoassays that can identify protective immunity against SARS-CoV-2 are needed to adapt quarantine measures, assess vaccination responses, and evaluate donor plasma. To date, however, the utility of such immunoassays remains unclear. In a mixed-design evaluation study, we compared the diagnostic accuracy of serological immunoassays that are based on various SARS-CoV-2 proteins and assessed the neutralizing activity of antibodies in patient sera. METHODS: Consecutive patients admitted with confirmed SARS-CoV-2 infection were prospectively followed alongside medical staff and biobank samples from winter 2018/2019. An in-house enzyme-linked immunosorbent assay utilizing recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was developed and compared to three commercially available enzyme-linked immunosorbent assays (ELISAs) targeting the nucleoprotein (N), the S1 domain of the spike protein (S1), and a lateral flow immunoassay (LFI) based on full-length spike protein. Neutralization assays with live SARS-CoV-2 were performed. RESULTS: One thousand four hundred and seventy-seven individuals were included comprising 112 SARS-CoV-2 positives (defined as a positive real-time PCR result; prevalence 7.6%). IgG seroconversion occurred between day 0 and day 21. While the ELISAs showed sensitivities of 88.4% for RBD, 89.3% for S1, and 72.9% for N protein, the specificity was above 94% for all tests. Out of 54 SARS-CoV-2 positive individuals, 96.3% showed full neutralization of live SARS-CoV-2 at serum dilutions ≥ 1:16, while none of the 6 SARS-CoV-2-negative sera revealed neutralizing activity. CONCLUSIONS: ELISAs targeting RBD and S1 protein of SARS-CoV-2 are promising immunoassays which shall be further evaluated in studies verifying diagnostic accuracy and protective immunity against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL